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Moore’s (1954) inviscid linear analysis of the interaction of a shock wave with a 
plane acoustic wave is evaluated by comparison to computation. The analysis is 
then extended to study the interaction of an isotropic field of acoustic waves with 
a normal shock wave. The evolution of fluctuating kinetic energy, sound level and 
thermodynamic fluctuations across the shock wave are examined in detail. 

The interaction of acoustic fluctuations with the shock is notably different from 
that of vortical fluctuations. The kinetic energy of the acoustic fluctuations decreases 
across the shock wave for Mach numbers between 1.25 and 1.8. For Mach numbers 
exceeding 3, the kinetic energy amplifies by levels that significantly exceed those found 
in the interaction of vortical fluctuations with the shock. Upon interacting with the 
shock wave, the acoustic waves generate vortical fluctuations whose contribution to 
the far-field kinetic energy increases with increasing Mach number. The level of sound 
increases across the shock wave. The rise in the sound pressure level across the shock 
varies from 5 to 20 dB for Mach number varying from 1.5 to 5. The fluctuations 
behind the shock wave are nearly isentropic for Mach number less than 1.5, beyond 
which the generation of entropy fluctuations becomes significant. 

1. Introduction 
The interaction of shock waves with a turbulent flow is a common phenomenon in a 

wide range of aerodynamic applications. Typical problems involving shock/turbulence 
interaction include the production of sound by supersonic turbulent jets, the fluc- 
tuating pressure loads on aircraft structures due to shock-induced separation and 
the use of a shock wave to enhance mixing. This has led to several experimental 
investigations, most of which examine the interaction of shock waves with boundary 
layers and free shear layers. The complexity of these flows has precluded isolation 
of the effect that the shock wave exerts. As a result, recent experiments (Debieve & 
Lacharme 1986; Keller & Merzkirch 1990; Honkan & Andreopoulous 1992; Jacquin, 
Blin & Geffroy 1991) have examined the more fundamental problem of a shock wave 
interacting with isotropic turbulence. 

Recently, Rotman (1991), Lee, Lele & Moin (1993, 1994a,b) and Hannappel & 
Friedrich (1  994) have numerically computed the interaction of isotropic turbulence 
with a normal shock. Lee et al. and Hannappel & Friedrich solved the three- 
dimensional compressible Navier-S tokes equations while Rotman solved the two- 
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dimensional Euler equations. Rotman and Lee et al. compare their results to a 
linear theory developed by Ribner (1953, 1954, 1987) that predicts the evolution of 
turbulence across and downstream of the shock. The results of the DNS were seen 
to compare favourably with the theory. 

Both Ribner and Lee et al. considered the interaction of solenoidal turbulence with 
a shock wave. However both aerodynamic flows and experimental configurations 
have acoustic waves in the turbulence that interacts with the shock. The influence 
of acoustic waves on the interaction of a turbulent flow with the shock wave is 
therefore a problem of fundamental importance. As the level of compressibility of a 
turbulent flow (parametrized by the ratio of the kinetic energy in the dilatational and 
solenoidal components) increases, the effects associated with the acoustic component 
will become important. As a prelude to this problem, we study how a field of acoustic 
waves interacts with a shock wave. A related problem that has received considerable 
attention is the propagation of a sonic boom through atmospheric turbulence. The 
transonic nature of that problem renders linear analysis invalid; related references 
may be found in the work of Crow (1969), Pierce (1971, 1992) and Rusak & Cole 
(1993). The focus of this paper is the influence of the dilatational component in the 
evolution of a turbulent flow across a shock wave. The examples outlined earlier are 
largely outside the transonic regime. 

We extend the inviscid linear analysis of Moore (1954) to study the the interaction 
of an isotropic field of acoustic waves with a shock wave. Formulation of the problem 
and motivation for the use of linear analysis is presented in $2. A brief description 
and evaluation of the linear analysis is also included. The significant results of this 
study are presented and discussed in $3 and $4. Finally, the main conclusions are 
summarized in $5. 

2. Linear analysis 
2.1. Background 

The linear analysis is based upon the decomposition of a compressible flow field into 
vorticity, acoustic and entropy modes as suggested by Kovasznay (1953). In the linear 
inviscid limit, these modes are decoupled from each other when the mean flow is 
spatially uniform. The vorticity mode has no pressure or density fluctuations but has 
solenoidal velocity fluctuations that are convected by the mean flow. The acoustic 
mode travels at the speed of sound relative to the mean flow, has isentropic pressure 
and density fluctuations and a corresponding irrotational velocity field that satisfies 
the acoustic wave equation. The entropy mode is convected by the mean flow and has 
no velocity or pressure fluctuations; it has only density and temperature fluctuations. 

Several researchers have used linear analysis to examine the interaction of these 
unsteady disturbances with a shock wave. The earliest workers are apparently 
Blokhintzev (Landau & Lifshitz 1982), Burgers (1946) and Kantrowitz (1947), who 
examined the one-dimensional interaction of an acoustic wave with a normal shock 
wave. Carrier (1949) used linear analysis to study the stability of supersonic flow 
past a wedge. Interest in the configuration of shock waves in supersonic channel flow 
prompted Adams (1949) to study the steady interaction between a shock wave and 
an acoustic wave incident from upstream. Linear analysis was used by Chu (1952) to 
examine the interaction between a wedge-generated shock wave and an acoustic wave 
incident from downstream. The interaction between sound and a shock wave was 
also studied by Lighthill (1949). Prompted by the problem of ‘shock-noise’, Ribner 
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(1953) studied in detail the interaction between a vorticity wave and a shock wave. 
Ribner (1954, 1987) subsequently extended his analysis to consider a spectrum of 
incident vorticity waves (in three dimensions) and computed, for an isotropic incident 
spectrum, detailed statistics of the downstream flow field with emphasis on the 
generated noise. An incident spectrum of weak vortical disturbances - ‘turbulence’ - 
was seen to produce high levels of noise downstream of the shock. A detailed analysis 
of the unsteady interaction of an obliquely incident acoustic wave with a shock wave 
of infinite extent was conducted by Moore (1954). Moore studied acoustic waves that 
were incident from downstream as well as upstream. He also outlined extension of 
his analysis to study the interaction of a vorticity wave with a shock wave. Other 
workers that have made use of linear analysis include Kerrebrock (1956), Johnson & 
Laporte (1958), Lowson (1968) and McKenzie & Westphal(l968). Chang (1957) used 
linear analysis to examine the interaction of a plane entropy wave with an oblique 
shock. In addition to considering the general case of an infinite oblique shock, Chang 
also considered the case where the oblique shock was produced by a wedge and 
accounted for reflections from the wedge. Chang’s theoretical results were used by 
Cuadra (1968) to perform a numerical parametric study of the infinite oblique shock 
problem. 

These earlier studies were largely motivated by shock stability and the ‘shock-noise’ 
phenomenon. Recent interest in the interaction of turbulent flows with shock waves 
has led to renewed interest in linear analysis. Zang, Hussaini & Bushnell (1984) 
evaluated the linear analysis of McKenzie & Westphal (1968) by comparison to 
their numerical solution of the two-dimensional Euler equations. Their study, while 
restricted in terms of the incident angle of the disturbance, examined a wide range of 
shock strengths and disturbance amplitudes. Within the uncertainty of their numerical 
method, they concluded that linear analysis was valid over a surprisingly large range 
of shock strengths and disturbance amplitudes. 

As mentioned earlier, Lee et al. (1993) conducted direct numerical simulation of the 
interaction of three-dimensional isotropic turbulence (0.06 d Mt d 0.11, where Mt is 
the fluctuation Mach number defined as the ratio of r.m.s. velocity to the mean speed 
of sound upstream of the shock wave) with a normal shock (1.05 < M < 1.2 where 
M is the mean upstream Mach number). Subsequently, stronger shock strengths 
( M  = 2.0,3.0;Mt = 0.11) were studied (Lee et al. 1994b). Detailed comparison of 
the DNS results to Ribner’s (1954, 1987) linear analysis were made. The statistics of 
vorticity, turbulent kinetic energy, length scales and the fluctuating thermodynamic 
quantities were compared. All trends seen in the DNS were reproduced by the linear 
analysis, which showed good quantitative agreement for most quantities compared. 
An erroneous conclusion regarding the inability of the linear analysis to reproduce 
the rapid evolution of kinetic energy immediately downstream of the shock has been 
corrected (Lee et al. 1994~). Comparison of Rotman’s results to linear analysis by 
Lee (Lele 1994) showed similar good agreement. This success of the linear analysis 
encourages us to use it to study the acoustic wave/shock interaction problem. 

We repeat Moore’s (1954) analysis of the interaction of a shock wave with a 
single acoustic wave that is incident from upstream. The analysis of a single wave 
interacting with a shock wave is evaluated by comparison to numerical computation. 
Integration of the results of the single acoustic wave/shock wave interaction over a 
spectrum of incident acoustic waves is used to describe the evolution of an isotropic 
field of acoustic waves across a shock wave. The observed trends are explained by 
appropriate decomposition of the flow field behind the shock wave. Also, differences 
with the interaction of isotropic vortical fluctuations with the shock wave (Ribner 
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FIGURE 1. Schematic of the interaction of a shock wave with a plane acoustic wave 
that is incident from upstream. 

1954) are discussed. Finally, the analysis is used to quantitatively describe the 
combined interaction of isotropic vortical and acoustic fluctuations with the shock 
wave. 

2.2. The interaction of a plane acoustic wave with a shock wave 
Figure 1 shows a schematic of the problem. A normal shock propagates at speed 
V into fluid that is at rest in the mean. The mean velocity behind the shock is 
denoted by U. The subscripts 1 and 2 denote the fluid in front and behind the shock 
respectively. The fluid at rest is assumed to be perturbed by the weak field of a plane 
acoustic wave that is incident at angle ~1 to the shock. The flow field associated with 
the acoustic wave is given by 

Here, P I ,  R1 and a1 are the mean pressure, density and sound speed in the fluid 
ahead of the shock while uI and v1 are the disturbance velocities in the XI- and 
y-directions respectively. The pressure and density fluctuations associated with the 
incident acoustic wave are denoted by p1 and p l .  The variables 1 and m are related 
to the direction of propagation by 1 = sinvl and rn = cosy1 and 11 represents the 
lengthscale of the disturbance. Note that the coordinate system is fixed in the fluid that 
is at rest, yielding x1 = V t  at the mean position of the shock wave. The amplitudes 
of velocity, pressure and density are related through the governing equations for an 
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acoustic wave, i.e. 

(2) 
m 

YM 
lA1 = --mA2; A3 = yA4; A1 = --A3. 

M = V/a l  is the mean Mach number of the shock wave and y is the ratio of 
specific heats. Incidence of the acoustic wave causes the shock wave to deform with a 
profile that matches the profile of the incident wave. The linearized Rankine-Hugoniot 
equations are used to describe the jump of the disturbance across the disturbed shock. 
This yields boundary conditions for the flow behind the shock which is described by 
the Euler equations linearized about the uniform mean flow. The linearized Euler 
equations are solved in consonance with the boundary conditions to calculate the 
displacement of the shock wave and the flow field downstream of the shock. 

The flow behind the shock wave has two distinct regimes depending upon the angle 
of incidence of the acoustic wave. The two regimes differ in the nature of the pressure 
field (and hence, its associated velocity, temperature and density field) behind the 
shock wave. Over a range of incident angles 0 < y1 < ycl or ycu < y1 < TC, the 
pressure field behind the shock is a freely propagating plane acoustic wave. However, 
if Vci < y1 < ycu, the pressure field behind the shock corresponds to an evanescent 
wave and decays exponentially. Over both these regimes, the vorticity and entropy 
waves propagate without decaying. yci and ycu are roots of the following equation 
(Moore 1954): 

Note that Ycr and ycu depend only on the mean Mach number. The displacement of 
the shock front has a certain speed of propagation along the shock front due to the un- 
steady nature of the incident field. Analogous to the classical flexural wall problem in 
acoustics, (Pierce, 1981) the nature of the downstream pressure field is determined by 
how the speed of the disturbance along the shock front compares to the mean speed of 
sound and velocity downstream of the shock. Moore (1954) illustrates the two regimes 
geometrically. Ribner (1953) provides an equivalent explanation by noting that the un- 
steady interaction of an oblique wave with a normal shock can be transformed into the 
steady interaction of an oblique wave with an oblique shock. In the transformed co- 
ordinates, depending upon the incident angle of the wave, the flow behind the oblique 
shock is either supersonic or subsonic (yielding either a wave equation or Poisson 
equation for the pressure), which corresponds to the two regimes mentioned above. 

The method for solution of the downstream flow field is given by Moore. In 
the interests of clarity, we reproduce his results in the Appendix. Apart from the 
existence of two different regimes, note that the velocity field is a linear superposition 
of acoustic and vortical components. Similarly, the density and temperature fields are 
superpositions of acoustic and entropic components. The pressure field is associated 
solely with the acoustic component. 

2.3. Comparison of linear analysis to numerical solution 
We compare results of the linear analysis to numerical computations of the inter- 
action of a normal shock wave with a plane acoustic wave that is incident from 
upstream. The computation solves the two-dimensional compressible Navier-Stokes 
equations in a frame of reference that moves at the mean speed of the shock wave. 
The sixth-order Pad6 scheme (Lele 1992) is used to compute spatial derivatives and 
the third-order Runge-Kutta scheme (Wray 1986) is used to integrate in time. No 
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FIGURE 2. Comparison of the predictions of the linear analysis to computed results. The lines 
are values obtained from analysis while the symbols represent computed values. All quantities are 
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shock-capturing or shock-fitting is used to treat the shock wave; its structure is de- 
termined by molecular viscosity and is resolved by a non-uniform mesh (about seven 
points inside the shock wave). 

Periodic boundary conditions are imposed at the transverse boundaries. The 
disturbance field corresponding to a sinusoidal acoustic wave is superposed onto the 
supersonic mean flow at the inflow boundary. Non-reflecting boundary conditions 
(Poinsot & Lele 1990) are specified at the outflow boundary. The initial condition 
is a numerically computed steady shock wave. The disturbance is then introduced 
through the inflow boundary condition. Statistics are gathered over a period of the 
inflow disturbance after the initial transients exit the domain. 

(1984) who 
compared the predictions of McKenzie & Westphal's (1968) linear analysis to their 
numerical solution of the two-dimensional Euler equations using a shock-fitting 
scheme. Zang et al. examined the effect of incident angle, shock strength and the 
amplitude of the incident disturbance in the interaction of acoustic and vorticity waves 
with a shock wave. Results were presented only in the freely propagating regime. 
The dependence on incident angle was examined in the interaction of disturbances of 
amplitude 0.1% and 10% with a shock wave of Mach number 8. Good agreement was 
seen away from the critical angle; divergence from the linear analysis prediction was 
seen within about 20" of the critical angle. The linear analysis predictions were quite 
robust in terms of dependence on shock strength and disturbance amplitude. For 
an incident angle of 30", the linear predictions were valid for disturbance amplitudes 
as high as 25% for acoustic waves and 100% for vorticity waves and shock waves 
whose Mach number was close to unity. 

We present results of the interaction of a sinusoidal acoustic wave (p l /P1  = 2.5%) 
interacting with a shock wave of Mach number 1.5. The Mach number of 1.5 was 
chosen to be representative of experiments on the shock/turbulence interaction. In 
the context of Zang et al.3 results, we only present the dependence on the incident 
angle. Results are presented in both freely propagating and decaying regimes. Figure 2 

This comparison is intended to complement that by Zang et al. 
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compares the computed values of r.m.s. dilatation and vorticity with predictions of the 
linear analysis. Note that ye{ and yeu have values of 97.16' and 154.45" respectively 
for M = 1.5. Excellent agreement is seen except for a region within 25" of the critical 
angles. As noted by Zang et al. (for the shock wave of Mach number 8), a decaying 
pressure field is observed downstream of the shock wave before the critical angle is 
reached. 

A possible reason for deviation of the computed result from the linear analysis 
around the critical angle is as follows. Within linear analysis, the unsteady interaction 
of a plane disturbance with a normal shock wave may be transformed into the steady 
interaction of the disturbance with an oblique shock wave. This transformation is an 
integral part of Ribner's and Chang's analysis of the interaction of a shock with a 
vorticity and entropy wave respectively. The transformation for the present problem 
involves defining coordinates x, and y ,  where 

i.e. the flow is observed in a frame of reference that moves at the speed of the mean 
shock wave in the x-direction and at speed (a ,  + mV)/l  in the y-direction. In these 
transformed coordinates, the governing equations behind the shock wave are the 
steady Euler equations that are linearized about uniform mean flow at an equivalent 
Mach number that is given by the relation 

This equivalent Mach number depends upon the Mach number of the normal shock 
wave and the incident angle of the disturbance and equals unity at the critical angle. 
As a result, incident angles close to the critical angle correspond to steady transonic 
flow downstream of the shock wave in the transformed coordinates. It is well known 
that the linear approximation is inconsistent in the transonic regime. We believe that 
the transonic small-disturbance equations are necessary to accurately represent the 
interaction around the critical angle. 

Further indication of this is provided in figure 3, where the dependence of the 
interaction upon the amplitude of the incident disturbance is examined. The interac- 
tion away from the critical angle (yl = 60") is compared to that close to the critical 
angle (yl = 100"). The r.m.s. intensity (prms/P)  of the incident pressure fluctuation is 
varied from 0.14% to 14% in both cases. The vorticity (normalized by the incident 
dilatation) behind the shock wave is plotted against the amplitude of the incident 
disturbance in figure 3. The variation with the incident amplitude is negligible away 
from the critical angle. However, significant dependence upon the incident amplitude 
is seen close to the critical angle. This behaviour is in accordance with the expectation 
that the transonic small-disturbance equations are needed to describe the interaction 
around the critical angle. 

2.4. The interaction of afield of acoustic waves with a shock wave 
Moore's analysis is now extended to describe the interaction of an isotropic field 
of acoustic waves with the shock wave. The acoustic field is represented by a 
superposition of Fourier modes, each of which corresponds to a plane wave that 
interacts with the shock. Linearity ensures that the Fourier modes interact with the 
shock wave independently. Integration over time and all the incident waves is then 
used to describe the statistical evolution of the acoustic field across the shock. 
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FIGURE 3. Computed values of the vorticity behind the shock wave as a function of the amplitude 

of the incident disturbance. The mean Mach number is 1.5. o , y1 = 100"; x , ~1 = 60". 
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FIGURE 4. Coordinate system used in analysis of the interaction of a shock wave with 
an isotropic field of acoustic waves that are incident from upstream. 

The use of cylindrical coordinates establishes a direct relation between Moore's two- 
dimensional analysis and the three-dimensional problem. Figure 4 shows a schematic 
of the problem in a frame of reference that moves at the speed of the undisturbed 
shock. The (y,z)-plane corresponds to the shock wave, while the acoustic wave lies 
in the (xl,x,)-plane that makes an angle q5 with the y-axis. Irrotationality precludes 
any component of velocity outside this plane. In the (xl,x,)-plane, the acoustic wave 
makes an angle y1 with the xl-axis. It is easily seen that the (xl,xr)-plane is equivalent 
to the (x1,y)-plane used in Moore's analysis. The incident disturbance is of the form 
p l / P ~  = A3 eik(mrl+'xr-alt). Comparison to equation (lc) shows that the wavenumber 
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k = 1/11, the variables m and 1 retain their definitions and the coefficient A3 is 
complex. Moore's two-dimensional results (see the Appendix) are therefore used in 
the plane of the wavenumber vector to describe the evolution of a single Fourier 
mode across the shock wave. 

As noted in the Appendix, the solution is quite straightforward when the incident 
disturbance is a Fourier mode. Moore's results may be used to obtain the following 
expressions for the amplitude of the fluctuating field behind the shock for each 
incident wave. Note that we transform to a coordinate system that moves at the mean 
speed of the shock, i.e. our streamwise coordinate becomes q 2  = -[x2 - ( V  - U ) t ] .  
Also a caret is used to indicate that the plane waves correspond to Fourier modes. 

For 0 d v1 < vcr or veu < v1 d 71, 

- -  
The constants K ,  F and fi are associated with the acoustic component of the flow 

and r are associated with the vortical component and 6 corresponds field. Similarly, 
to the entropic component. 

If vc/ < I , O ~  < yCu, the amplitudes behind the shock are given by 

where 

The amplitude of ur2/V may be obtained from the expression for u2/V by replacing 
F(I), z(1), g(2) and g(2) by @I),T(~), f i (2)  and &2) respectively. The amplitude of p2/R2 
may be obtained from the expression for U Z / V  by replacing F(,), 6(1), F(2) and G ( 2 )  by 
~ ( l ) / y ,  &), & 2 ) / y  and &) respectively. 

Analogous to the propagating regime, the constants &+ F(a) and fi(.) are associated 
with the acoustic component of the flow field. &) and ?(a) are associated with the 
vortical component and 

- 

corresponds to the entropic component. 
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Components of the velocity and wavenumber vector in Cartesian coordinates are 
related to the those in cylindrical coordinates by the following expressions : 

u W 
Ub = 0. u,=-=---- 

COS# sin#’ 
ki = k cos y1, k2 = k sin yl cos 4, k3 = k s h y 1  sin 4. (6b) 

Note that the solution downstream of the shock wave requires the spectrum of 
pressure fluctuations ahead of the shock. We assume the incident acoustic field to be 
isotropic. This combined with the condition of irrotationality requires the upstream 
spectrum of the velocity fluctuations to be of the form 

E(k) kikj Eij(k) = -- 
8zk2 k2 

where Eij(k) is the energy spectrum tensor and E(k) is the three-dimensional energy 
spectrum. Using the acoustic relation, A3 = ?MAl/ cos yl ,  and the above expression 
for the energy spectrum tensor, we get 

Substituting for 12(k)/P12 and integrating over wavenumber space at every 
streamwise location (qz),  we get the streamwise evolution of statistics downstream 
of the shock wave. Note that the elemental volume, d3k = k2 s h y l  dyl d 4  dk, and 
k = (kl varies from 0 to co, y1 from 0 to TC and # from 0 to 271. Since the coefficients 
in the above equations are independent of 4, the integration over 4 can be done 
analytically for isotropic initial spectra. For example, 

The integration over k and y1 is performed numerically at every streamwise location. 
Note that the results depend upon the three-dimensional energy spectrum, E(k). We 
assume the following form for E(k): 

This form of the spectrum was used by Lee et al. (1993, 1994b) in their analysis of 
the interaction of isotropic vortical turbulence with a shock wave, There are no data 
that suggest the chosen spectral dependency for an isotropic field of sound waves. 
However, only the inhomogeneous part of the flow field behind the shock wave is 
dependent upon the energy spectrum of the incident waves; the far-field ( ~ 2  + GO) 

values are independent of the shape of the spectrum since the integrals over k and y1 
separate. For example, it is easily shown that the transverse component of kinetic 
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energy in the far field is given by 

The above expression uses the fact that the correlation between acoustic and 
vortical modes integrates to zero in the far field. Since J E ( k ) d k  = q i / 2  the above 
expression is independent of the incident spectrum. We choose the same spectrum 
as Lee et al. to allow direct comparison to their results for the inhomogeneous near 
field behind the shock wave. Since the inhomogeneous component of the flow field 
exponentially decays behind the shock wave, it is the far field that is of importance 
and will be examined in detail. 

3. Results 
3.1. Spatial variation of kinetic energy 

The evolution of the kinetic energy behind the shock wave is shown in figure 5, where 
q2 = 2 + 2 3  is plotted as a function of downstream distance. The inhomogeneous 
nature of the velocity field is apparent immediately downstream of the shock. Note 
that the curves for M = 1.2 and M = 2 are qualitatively different. While q2 
decays monotonically for M = 1.2, it exhibits rapid non-monotonic variation for 
M = 2. A similar rapid variation of kinetic energy was observed in the interaction of 
vortical fluctuations with a shock wave by Lee et al. (1993). However, in the shock 
wave/vortical turbulence interaction problem, this variation was observed at all Mach 
numbers considered. 

Equations (5) and (6 )  are used to show that this variation of kinetic energy 
behind the shock wave is a consequence of the acoustic waves that are incident at 
ycl < y1 < ycu. Recall that the downstream pressure field and hence the velocity 
field set up by these waves decayed exponentially. Equation (5b) shows that the 
downstream kinetic energy over this regime has three components: a homogeneous 
component associated with the vorticity waves (T I ) ,  a monotonically decreasing 
component due to acoustic waves (7'2) and a non-monotonic component due to the 
correlation between the vorticity and acoustic waves (7'3). Upon integration over 
all the incident waves, these components combine to produce the rapid evolution 
immediately downstream of the shock. As seen from equations (5a) and (5b), the 
kinetic energy associated with waves incident outside this range has homogeneous 
vortical and acoustic components and a non-monotonic inhomogeneous component 
due to the correlation between them. When integrated over all incident waves, this 
correlation term is, however, much smaller than the other components. This is 
illustrated in Figure 6 where the kinetic energy is decomposed into four components 
(vortical, acoustic, correlation term for y , ~  < zyl < ycu and correlation term outside 
this regime) for M = 2.0. The correlation term associated with waves incident at 
ycl < y1 < ycu is seen to produce the rapid non-monotonic evolution downstream. 

A similar decomposition for the M = 1.2 shock showed the correlation term to be 
insignificant resulting in the monotonic evolution of Figure 5. In our linear analysis 
calculations, the non-monotonic downstream variation was observed for shocks whose 
Mach number exceeded 1.5. In studying the interaction of vortical disturbances with 
the shock wave, Lee et al. (1993) erroneously concluded that linear analysis could not 
reproduce this trend which they had found in the DNS. This error was subsequently 
corrected and explained by them (Lee et al. 1994a,b). 
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FIGURE 5. Evolution of q2 behind the shock wave as predicted by linear analysis. q2 is normalized 
with its upstream value. - , M = 1.2; ----, M = 2.0. 

-0 .5  
0 0.25 0.50 0.75 1.00 1.25 1.50 

k012/27[: 
FIGURE 6. Decomposition of q2 behind the shock wave under linear analysis. The Mach number 
is 2 and all components are normalized with the upstream value of q2. - , total; ----, 
vertical; -. -..- - - , acoustic; , correlation for ycl < ~1 < ycu; , correlation for 
0 < w1 < wc1,wcu < w1 < n. 

The equation governing the evolution of kinetic energy downstream of the shock 
wave provides further insight into the spatial evolution of kinetic energy. The Euler 
equations linearized about uniform mean flow may be rearranged (Mahesh 1995) to 
show that the quantity 

- 

Pa 

is conserved along a mean streamline. Itotal changes across the shock wave and 
remains unchanged downstream. The jiii correlation determines the partitioning 
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FIGURE 7. Far-field kinetic energy as a function of Mach number. All components are normalized - - -  

with their upstream value. ----, u2; - . - - - - - - ,  u2 = w2; - , q2. 

of Itotal between potential and kinetic energy. The spatial uniformity of Itotal and 
the exponential decay of $ behind the shock wave show that the rapid evolution 
of q2 behind the shock wave is a result of the rapid change in the partitioning 
of Itotal through the correlation between pressure and the shock-normal compo- 
nent of fluctuating velocity. Decomposition of the jjii correlation reveals that the 
rapid evolution of kinetic energy behind the shock wave is produced by the waves 
that are incident at ycl < y1 < ycu through the correlation between pressure and 
the vortical component of the velocity field. The far-field values of kinetic energy 
and pressure are, however, determined by the correlation between pressure fluctu- 
ations and the acoustic component of the velocity field in the propagating regime. 

3.2. Far-Jield kinetic energy 
As seen from figure 5, after a distance that is comparable to the lengthscale (taken 
as 2n/ko) of the incident acoustic waves, the kinetic energy asymptotes to its far-field 
value. The far-field values are independent of the upstream energy spectrum since 
the inhomogeneous terms drop out in the far field. As a result, the integration 
over k can be performed independently of y1 and 4 to give J E ( k )  dk = q:/2. To 
gauge the effect of shock strength upon the interaction, we examine (figure 7) the 
far-field kinetic energy (normalized with the upstream kinetic energy) as a function 
of the Mach number of the shock wave. Note that the shock-normal component 
of kinetic energy is larger than the transverse components for all Mach numbers 
shown. An interesting feature of the evolution of kinetic energy is that kinetic 
energy decreases slightly across the shock wave over a range of Mach number from 
1.25 to 1.80. The transverse components decrease across the shock wave over a 
wider range of the Mach number. This decrease in kinetic energy across the shock 
wave is peculiar to the acoustic wave/shock interaction problem. It is not observed 
in the interaction of vortical fluctuations with the shock wave where under linear 
analysis, kinetic energy increases across the shock wave for all shock strengths. 
Also, for M > 3, the amplification of kinetic energy is significantly higher than 
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FIGURE 8. The far-field kinetic energy, decomposed into acoustic and vortical components. Both 
components are normalized with the upstream value of q2. -----..-, total; - , vortical; - - - - , 
acoustic. 

amplification levels seen in the interaction of vortical fluctuations with the shock 
wave. 

The decrease in kinetic energy across the shock wave may be explained by de- 
composing (figure 8) the far field energy into acoustic and vortical components and 
examining their dependence on Mach number. Both components are normalized with 
the upstream kinetic energy. This decomposition of kinetic energy is possible since 
the correlation between vortical and acoustic components falls to zero in the far 
field. Note that the kinetic energy associated with the vortical component increases 
monotonically with Mach number and exceeds the upstream kinetic energy beyond 
a Mach number of about 2.25. The kinetic energy associated with the acoustic 
component, however, decreases across the shock wave for Mach numbers exceeding 
about 1.2. These two components compete in determining the overall evolution of 
kinetic energy. For lower Mach numbers, the acoustic component dominates since 
not enough vorticity is generated downstream, causing the overall kinetic energy to 
drop. At higher Mach number, the vortical component dominates due to increased 
generation of vortical fluctuations and the overall kinetic energy rises across the 
shock. The vortical component of energy exceeds the acoustic component for Mach 
number exceeding 2. 

The decrease of the far-field acoustic kinetic energy with Mach number is explained 
as follows. As the Mach number increases, ycu - ycl increases (see figure 4 of Moore) 
and hence a larger fraction of incident waves lie in the range yel < y1 < yCu. Recall 
that these waves make no contribution to the far-field acoustic kinetic energy. The 
only contribution to the far-field acoustic kinetic energy comes from waves incident 
outside this range whose amplification increases upon increasing the Mach number. 
Upon integrating over all incident waves, the net result of these competing factors 
is to produce (as seen in figure 8) a slow decrease (for M < 3.5) in the the far-field 
acoustic kinetic energy. Note that the variation of ycl and ycu with Mach number is 
most rapid at lower Mach numbers; in the limit of infinite Mach number, ye[ and 
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RGURE 9. The far-field 'turbulent' intensity compared to the intensity of incident pressure 
fluctuations. The curve asymptotes to 2.75 ( y  = 1.4). 

ycu are symmetrical about 90" and (for y = 1.4), have values of 67.8" and 112.2" 
respectively. 

3.3. The production of turbulence 

Having observed the generation of vortical fluctuations - 'turbulence' - behind the 
shock wave, we examine in Figure 9, the intensity of the turbulence relative to 
the intensity of the incident pressure fluctuations. Note that (qvort./U2)/(p1/P1) is 
of the order 1 for most of the Mach numbers shown. (U2 = V - U is the mean 
velocity behind the shock wave if the shock were stationary in the mean.) This 
suggests an interesting possibility in turbulent flows involving multiple shock waves 
(e.g. unadapted supersonic jets). It is known that upon interaction with a shock 
wave, turbulence generates intense sound. For isotropic turbulence, the intensity of 
the sound generated, p2/P2, scales with the intensity of the incident turbulence q1/ U1. 
In turbulent flows involving multiple shock waves, it is reasonable to expect the 
generated sound waves to interact with the subsequent shock waves. If this happens, 
figure 9 suggests that these acoustic waves can generate significant levels of turbuIence 
through the interaction. We do not mean to suggest that our homogeneous analysis 
is directly applicable to flows involving shock cells, which are quite inhomogeneous. 
However, our results suggest that acoustic wave/shock wave interaction may be a 
significant generator of turbulence in these flows. 

3.4. Thermodynamic fluctuations 
Interaction with the shock wave is seen to significantly increase sound levels. Figure 10 
shows the intensity (p2/P2) of the far-field pressure fluctuations normalized with the 
intensity of pressure fluctuations upstream of the shock. Note that the intensity drops, 
although pressure fluctuations actually amplify across the shock wave. The rise across 
the shock wave of the far-field sound pressure level (SPL) and the level of acoustic 
intensity (AIL) in dB is shown in figure 11. We define 
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FIGURE 10. Intensity of pressure, density and temperature fluctuations in the far-field compared to the 
intensity of incident pressure fluctuations. - , ~ 2 / P 2 ;  ----, y h / R 2 ) ;  '..-"'., y / ( y  - l)(Oz/Tz). 
B2 and T2 are the r.m.s. and mean temperature behind the shock wave respectively. The three curves 
are normalized with p l / P 1  and asymptote to 0.29, 0.67 and 1.54 respectively ( y  = 1.4). 

where the subscript r denotes reference values. The rise in the level of sound across 
the shock wave is independent of the reference values. The increase in sound pressure 
level vanes from 5 to 20 dB while the rise in acoustic intensity varies from 2 to 10 
dB over the range of Mach numbers shown. Figure 10 also shows the nature of the 
thermodynamic fluctuations in the far field. The density and temperature fluctuations 
are normalized such that the three curves would collapse if the fluctuations were 
isentropic. We see that the isentropic relations hold until a Mach number of 1.5, 
beyond which the entropy fluctuations that are generated at the shock wave become 
significant relative to the acoustic fluctuations. The increasing importance of the 
entropy fluctuations in the far field is due to two factors: increased production of 
entropy fluctuations at the shock wave and the decrease with Mach number of the 
far-field intensity of pressure fluctuations. Asymptotically, (s2/Cp)/(p2/P2) equals 1.47 
( y  = 1.4) where s2 is the r.m.s. entropy behind the shock wave and C, is the specific 
heat at constant pressure. 

3.5. Asymptotic behaviour 
Another feature that distinguishes the interaction of sound waves with a shock wave 
is the asymptotic behaviour with respect to Mach number. Linear analysis shows that 
for incident acoustic waves, quantities such as the ratio of fluctuating kinetic energy, 
pressure and temperature fluctuations across the shock wave are not bounded, but 
increase as M 2 .  This is easily seen from equations ( 5 )  and (6). The constants (e.g. k) 
in the equations have finite values in the limit of infinite Mach number and hence 
the intensities of velocity, density and pressure fluctuations are bounded for finite 
intensity of incident pressure fluctuations. However, for a given intensity of pressure 
fluctuations, the incident kinetic energy decreases as 1 / M 2 ,  causing the amplification 
of kinetic energy to vary as M 2  for strong shocks. Similarly, since the mean pressure 
and temperature ratio varies as M 2  for strong shocks, the ratios of pressure and 
temperature fluctuations across the shock wave are not bounded. Unboundedness 
of kinetic energy amplification is peculiar to the acoustic wave/shock interaction 
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FIGURE 11. The level of far-field sound behind the shock wave compared to the incident sound 

level. - - - - , Sound pressure level; - , level of acoustic intensity. 
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FIGURE 12. Far-field kinetic energy as a function of Mach number. All components are normalized 

The three curves asymptote to 0.49, 0.40 and 0.43 respectively ( y  = 1.4). 

- - - - -  - 
........ with the incident energy and M 2 .  - - - - , U ; / M ~  , v ; / M 2  0: = w ; / M 2  w:;  - > 4:/M2 4:. 

problem; it is not present when vortical fluctuations interact with the shock wave. 
We show in figure 12 the kinetic energy amplification normalized by M 2 .  Note that 
the amplification ratios asymptote to finite values when properly scaled with M2.  

4. Discussion 
4.1. Evaluation of linear analysis 

The inviscid linear analysis of Moore (1954) is extended to study the interaction of 
a three-dimensional isotropic field of acoustic waves with a normal shock wave. The 
objective of this study is to isolate the effect of acoustic waves on the evolution of 
a turbulent flow as it interacts with a shock wave. As the level of compressibility 
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of a turbulent flow increases, the effects associated with the acoustic component will 
become important. Understanding the interaction of acoustic waves with a shock 
wave is therefore of fundamental importance. The interaction is likely to be especially 
important in unbounded turbulent flows. 

Our use of linear analysis is prompted by its success in past investigations. In the 
interaction of a single unsteady disturbance with a shock wave, there appear to be 
four important factors that could cause deviation from linear behaviour : proximity 
of the incident angle to the critical angle, the amplitude of the disturbance being 
non-negligible relative to the strength of the shock wave, the mean Mach number 
being close to unity and finally viscous effects. The linear approximation is invalid 
if the mean Mach number is very near unity. As mentioned before, workers such as 
Crow (1969), Pierce (1971, 1992) and Rusak & Cole (1993) address that regime of 
shock/turbulence interaction. 

Proximity to the critical angle seems to be the most important factor for shocks 
beyond the transonic regime. Our computations of single acoustic waves interacting 
with a shock wave disagree with linear analysis at around 25" of the critical angle; 
very good agreement is seen outside this range. Fortunately, in the interaction of a 
spectrum of waves with a shock wave, the incident waves around the critical angle 
make only partial contribution to the overall energy. With regard to the amplitude 
of incident disturbances, results of computations are encouraging. Our computations 
show good agreement with linear analysis away from the critical angle for disturbance 
amplitudes varying from 0.14% to 14%. Zang et al. (1984) show that linear analysis 
yields good predictions away from the critical angle for acoustic disturbance ampli- 
tudes as large as 25%. Meadows, Caughey & Casper (1994) reach a similar conclusion 
in their study of the one-dimensional interaction of an acoustic wave with a shock 
wave. Their comparison of linear analysis to a nonlinear Riemann analysis yielded in- 
distinguishable results (to plotting accuracy) for disturbance amplitudes less than 10%. 
An effect of increasing disturbance amplitude for a fixed shock strength has been doc- 
umented by Honkan & Andreopoulous (1992) and Lee et al. (1992) in the interaction 
of isotropic turbulence with a normal shock. Both studies reported a decrease in the 
amplification of kinetic energy as the disturbance amplitude was increased. Honkan 
& Andreopoulous' experimental study had a shock of mean Mach number 1.24 while 
Lee et al.'s numerical results were for a shock wave of mean Mach number 1.2. 

4.2. Combined interaction of vortical and acoustic fluctuations 
The linearity of the analysis permits the use of superposition to predict the combined 
interaction of vortical and acoustic fluctuations with a shock wave. Since sound 
and vorticity travel at different speeds, the correlation between them can be assumed 
negligible upstream and in the far field behind the shock wave. The amplification of 
kinetic energy across the shock wave can therefore be expressed as 

where the subscript 0 represents conditions upstream of the shock and the subscripts 
w and 0 represent the vortical and dilatational components respectively. The ampli- 
fication ratio in the mixed problem may be expressed in terms of the amplification 
ratios of vortical and acoustic fluctuations as 

" 2  
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where fo = qi / (q t )o ,  f e  = qi/(qi),, and X = (qi)o/q$ X is the ratio of acoustic 
to total kinetic energy upstream of the shock wave. Note that as X varies from 0 
to 1, q2/q$ varies from f u  to fe. Available experiments on the shock/turbulence 
interaction are in the range of Mach numbers for which the kinetic energy of the 
acoustic component decreases across the shock wave. Our results suggest that the 
presence of acoustic waves in these experiments will decrease the amplification of 
kinetic energy. As noted by Jacquin, Cambon & Blin (1993), wind-tunnel experiments 
on the shock/turbulence interaction report lower amplification ratios than shock-tube 
experiments. They suggest that boundary-layer-induced oscillation of the shock wave 
in the wind-tunnel experiments might be responsible (through an unknown mecha- 
nism) for this observation. Our results suggest the alternative scenario that the lower 
kinetic energy amplification is a consequence of acoustic waves in the turbulence 
ahead of the shock wave. A likely source of these sound waves are the shock waves 
that are generated at the edges of the grid that generates turbulence in the tunnel. 
Further data are needed to support or discard this scenario. 

According to linear analysis (equation (1 l)), when compressible isentropic turbu- 
lence interacts with a shock wave, the evolution of kinetic energy lies between two 
limits - the pure solenoidal and pure dilatational limits. This behaviour is identi- 
cal to the response of homogenous turbulence to one-dimensional compression. As 
shown by Cambon et al. (1993), the evolution of kinetic energy when compressible 
homogeneous turbulence is subjected to one-dimensional compression lies between 
the solenoidal and the dilatational limits. However an important difference between 
the shock/turbulence interaction problem and the homogeneous compression prob- 
lem is the behaviour of the turbulence in the dilatational limit. For homogeneous 
turbulence, Cambon et al. show that the dilatational limit is characterized by loss of 
acoustic communication, which forces the pressure-strain correlation to zero, thereby 
yielding significantly higher amplification of q2 as compared to solenoidal turbulence. 
The compressibility-induced decrease in kinetic energy across the shock wave that is 
seen in the acoustic wave/shock wave interaction for 1.25 < M < 1.8 is not observed. 
This is due to the fundamentally different nature of the pressure fluctuations in the 
two problems. 

The difference between the one-dimensional compression of solenoidal turbulence 
and Ribner’s (1954, 1987) analysis of solenoidal fluctuations interacting with a shock 
wave was pointed out by Lee et al. (1993) and underscored by Jacquin et al. 
(1993). Results of the two problems agree for small Mach numbers; for large 
Mach numbers significantly larger amplification is seen in the homogeneous problem. 
Jacquin et al. also compare the compression of homogeneous compressible turbulence 
to Ribner’s analysis and note that the difference between the two problems is greater 
than pointed out by Lee et al. A comparison of the compression of dilatational 
fluctuations to the interaction of solenoidal fluctuations with a shock wave is not 
appropriate ; comparison should be made to the interaction of dilatational fluctuations 
with the shock wave. Such a comparison would reveal disagreement in the dilatational 
limit over the entire range of Mach numbers. While the homogeneous problem 
can approximate the evolution of kinetic energy in the interaction of solenoidal 
fluctuations with a shock wave of moderate strength, it is quite inappropriate as the 
incident turbulence becomes increasingly compressible. 

4.3. Comparison to computation 
Finally, we show that our analysis explains recent observations (Hannapel & Friedrich 
1994) on the interaction of compressible turbulence with a normal shock. Hannapel 
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& Friedrich numerically computed the interaction of low Reynolds number isotropic 
turbulence (RA - 4 upstream of the shock wave) with a normal shock of mean 
Mach number 2. The fluctuating Mach number was 0.1 at the inflow and the kinetic 
energy was equally distributed between the vortical and acoustic modes. (X = 0.5 
in our notation.) They compared this interaction with that of essentially solenoidal 
turbulence ( X  = 0) of the same fluctuating Mach number. The ‘compressible’ case 
displayed increased amplification of vorticity, decreased amplification of velocity 
components transverse to the shock, decreased reduction of Taylor microscale and 
decreased amplification of density, temperature and pressure fluctuations across the 
shock wave. 

The computation may suffer from lack of sufficient resolution of the shock front. As 
a result, we do not attempt quantitative comparison. We show that the computation 
follows the trends predicted by the linear analysis and quote the linear analysis 
predictions for reference. The higher amplification of the transverse components of 
vorticity in the compressible case is explained by the generation of vorticity through 
the acoustic wave/shock wave interaction. Using an expression similar to e uation 

where = o ~ 2 ~ / 8 0 ~  in the acoustic wave/shock wave interaction problem. Similarly, 
linear analysis predicts the decrease in transverse velocity and reduction in Taylor 
microscale. For the interaction of vortical fluctuations with a shock wave, Ribner’s 
analysis yields uz /u i  = 1.64 and u2/v,’ = 1.66 across a shock wave of Mach number 
2. For dilatational fluctuations, our analysis yields values of 1.69 and 0.9 respectively. 
Using an expression similar to equation (ll),  we get u’/ui = 1.67 and v’/v,’ = 1.28, 
i.e. the amplification of u2 is essentially unchanged while the amplification of the 
transverse velocity drops. 

Linear analysis yields values of 0.53 and 0.77 for Al / (Al ) , ,  and A Z / ( A Z ) ~  respectively 
(Ai  represents the Taylor microscale in the i-direction) for the vortical problem. 
Corresponding values for the compressible problem are 0.66 and 0.94 respectively. The 
reduced amplification of thermodynamic fluctuations in the compressible problem (an 
order lower) is a consequence of the fact that in pure vortical turbulence, the absolute 
level of incident thermodynamic fluctuations is much lower (zero in the linear limit). 
The level of thermodynamic fluctuations behind the shock wave, however, scales with 
the incident kinetic energy as a result of which the amplification of thermodynamic 
fluctuations will be quite large (undefined within linear analysis). 

(ll),  the increase in the amplification of vorticity may be shown to be 3g0(80 9 /a$), 

5. Summary 
We use inviscid linear analysis to study the evolution of fluctuating kinetic energy, 

sound level and thermodynamic fluctuations in the interaction of an isotropic field of 
acoustic waves with a normal shock wave. The analysis is an extension of Moore’s 
(1954) study of the interaction of a shock wave with a single acoustic wave. Moore’s 
analysis is evaluated by comparison to numerical computation. Good agreement is 
seen for angles away from the critical angles. A possible reason for disagreement 
around the critical angles is that the linear approximation is inconsistent in this 
regime; the transonic small-disturbance equations seem necessary. 

The interaction of an isotropic acoustic field with the shock is notably different 
from that of vortical fluctuations. The kinetic energy of the acoustic fluctuations 
decreases across the shock wave for Mach numbers between 1.25 and 1.8. For Mach 
numbers exceeding 3, the kinetic energy amplifies by levels that significantly exceed 
those found in the interaction of vortical fluctuations with the shock. These trends are 
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explained by decomposing the velocity field into acoustic and vortical components 
and examining their dependence on the Mach number. Upon interacting with the 
shock wave, the acoustic waves generate vortical fluctuations whose contribution to 
the far-field kinetic energy increases with increasing Mach number. The level of sound 
increases across the shock wave. The rise in the sound pressure level across the shock 
varies from 5 to 20 dB for Mach number varying from 1.5 to 5. The fluctuations 
behind the shock wave are nearly isentropic for Mach number less than 1.5, beyond 
which the generation of entropy fluctuations becomes significant. 

Finally the analysis is used to describe the combined interaction of isotropic vortical 
and acoustic fluctuations with a normal shock wave. 

This study was supported by the Air Force Office of Scientific Research under 
Grant No. 88-NA-322 with Dr Leonidas Sake11 as the technical monitor. The authors 
would also like to express their gratitude to NAS and NASA-Ames Research Center 
for the use of their computer facilities. 

Appendix. 

subscript 2 refers to conditions behind the shock wave. 
Moore’s solution for the flow dowstream of the shock 

For 0 d y1 < ycr or ycu < y1 d .n, 

wave is given below. The 

m + l / M  

21 

m + l l M  . 

x2 - lY ax2 + P y  + a2t 
A3 v 1 2  

’ x2 - ly 

21 
1 v2 

A3 v A2 

ax2 + Py + a2t 

The x2-axis is stationary in a frame of reference that moves with speed U yielding, 
x2 = (V - U)t at the mean position of the shock wave. Of the two terms that 
contribute to the velocity, density and temperature, the unsteady term corresponds 
to the acoustic wave while the steady term corresponds to the vorticity and entropy 
waves. The coefficients K ,  Q, G, H and I in the above equations are functions of the 
Mach number of the shock and the angle of incidence and are given below. 

- - - -  

If ycr < y1 < ycu, the solution is a bit more complex and is given by 

m + l / M  m + l / M  

A1 

x2 - 1Y 
x2 - l Y )  + &2)g ( 1 P2 - 

A3 R2 y p 2  1 1  
-- - 
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m + 1/M 

x2 - lY 1 - r  1 u2 - 
A3 v 

m+l /M . 

Analogous to the propagating regime, K(,), &a), g(,), &) and are functions of the 
Mach number of the shock and the angle of incidence and are given below. Also, q 
and 5 are related to x2,y and t by 

d 1 
11 21 4 = - - b 2  - (V - up], < = - ( E X 2  + p y  + CVt). 

y~ is thus proportional to the distance behind the shock while t=constant represents 
an oblique plane moving at constant velocity. The functions g,@(1) and @(2)  are 
defined as 

Since a homogenous acoustic field may be represented as a superposition of plane 
waves, we consider f ( x )  = eix for which g,  @(I) and @(2)  are given by 

g(g) = i e't, = e-qe't, @(2) = i e-qeit. 

Note that if the incident wave is a plane wave, the above equations take on a 
simple form. The coefficients in the solution are determined as follows: 

2 1  Y - - l M 2  B 2 =  (")- 2 
y + 1 M 2  (' - 2 )' y + l  yM2' 

2 
c1 = 

1 + i(y - 1)M2' 1 + - 1)M2 

2yM2 M 2  - i ( y  - 1) D1 = 
yM2 - i ( y  - 1)' O2 = yM2 - ;(y - 1) 

1 = siny,l, m = cosyl, n = tanyl,  
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a = G [ $ ( m + & ) - ; ] ,  1 p=-1- 22 
11’ 

a2 - - a2 - - 
F = --Ka, H = --KP, 

YV YV 

- 1+1/Mm- - - -  
G = L - F - B 1  G. 

n( 1 - r )  
For ycl ,< yt d ycu, the coefficients are as follows: 

+ 12 - 1/2cZ/a; ) 1’2 
1 - V2( 1 - +/a; 

( 1  -r)c, p = -1, d = 
V2 a = -- m +  1/M 

C =  
1 - V2( 1 - r)’/a; ’ as 

9 

4 o2 
y + 1 1  +o2’ 

h4 = -- 

2 4  1 - r )  

lo (I + yr) ’ h3 = - 

2rdo( 1 - r )  V 2  
l(1 + a2) Z’ hs = 
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- l + l / m M -  - l + l / m M -  
GW n(l - r )  I(1) = G(1), I ( 2 )  = n( 1 - r )  

The expression for &) in Moore's paper contains a typographical error; &) + 
m/yM + &/Dl should be replaced by &) + n/yM + Dz/D1. Also, the plots of the 
constants when ycl < yl < ycu do not agree with the formulae. After repeating 
Moore's analysis, we conclude that the formulae are correct; the figures are not. 
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